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Abstract

The paper analyzes the spaces 21() and the associated

trace spaces on the boundary aQ. These spaces are essential in

the theory of the h-p version of the finite element method. The

h-p version for the problem with nonhomogeneous essential and

natural boundary conditions is analyzed. Numerical experimenta-

tion is presented.
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1. Introduction

There are three versions of the finite element method: the

h-version, the p-version and the h-P version. The h-version is

the standard one, where the degree p of the elements is fixed,

usually on low levels, typically p = 1,2 and the accuracy is

achieved by properly refining the mesh. The p-version, in con-

trast fixes the mesh and achieves the accuracy by increasing the

degree p of the elements uniformly or selectively. The h-p

version is a combination of both.

The standard h-version has been thoroughly investigated theo-

retically and computationally. The literature here is overwhelm-

ing. To date there are over two hundred monographs and cohiference

proceedings [18] and new monographs and proceedings are continuous-

ly appearing. There are many programs of research and commercial

type available (e.g. see [18]).

The p and h-p version is a new development and it is very

successfully used for solving elliptic equations, especially in

the field of computational mechanics. The first theoretical

results were published in 1981 (see [2],[10]). There is only one

commercial code based on the p and h-p version of the finite

element, the program PROBE of NOETIC Technologies (St. Louis, MO).

PROBE deals with two-dimensional elasticity, stationary heat

problems and thermoelasticity problems. The code for the three-

dimensional problems will be released in 1988. PROBE presently is

utilizing 1 s p s 8. There is also commercial code FIESTA for

solving three-dimensional elasticity problems using 1 < p - 4. A

research code STRIPE developed by Aeronautical Research Institute



of Sweden has the p and h-p version features for three-

dimensional problems and is using 2 5 p i 12.

For the survey of the today's state of the art and recent

progress we refer to [1],[2],[8],[141,[19] where also additional

references can be found.

The success of the h-p version is, among others, based on

the fact that the elliptic problems of the structural mechanics

are usually characterized by piecewise analytic data (boundary,

coefficients, boundary conditions). This implies then that the

exact solution is analytic (or piecewise analytic) with singular

behavior of precise character in the a-priori known areas as for

example in the neighborhood of the corners of the domain. We have

shown in [4],[5] that this class of solutions can be very accu-

rately described in the frame of countably normed spaces. We have

denoted this space by V 2(Q). If the solution belongs to the this
'3

class then we have shown in [6],[13] that the finite element solu-

tion converges exponentially.

The present paper elaborates on the characterization of trace

spaces of the function u E S2 (0) and gives precisely verifiable

necessary and sufficient conditions for the input data (Dirichlet

and Neumann, conditions, right hand side) which guarantee that the
2

solution belongs to S12(0). In the previous paper we did address

the h-p version for the problems where the essential (Dirichlet)

boundary conditions could be satisfied exactly by the finite ele-

ment solution. In the present paper we design and analyze the way

how to deal with nonhomogeneous essential boundary conditions in
the full generality. We show that the performance of the method
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is the same for general essential conditions as for the natural

ones. In section 2 we give the preliminaries and basic defini-

tions. Section 3 defines the model problem of second order ellip-

tic partial differential equations. Section 4 introduces the
2

spaces of traces of u E S2(0) on r. It shows also that the

function in the trace spaces can be extended into 182(Q). This

section gives some of the major results of the paper. Section 5

defines the finite element method, its h-p version, characterizes

the meshes and elements under consideration and defines how to deal

with nonhomogeneous boundary conditions. Section 6 is analyzing

the convergence of the method and proves that the rate of conver-

gence is exponential. Finally, Section 7 brings numerical exam-

ples which show that the theoretical results having an asymptotic

character are applicable in the wide range of practical accuracy.
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2. Preliminaries
2

Let Q c R , (Xx 2) = x be a simply connected, bounded
M

domain with the boundary aQ = F = U r1. Fi are analytic simple
i=1

arcs called edges,

2where ( ),i( ) are analytic functions on I and +i(U )I +
a

jlj ( ) 12 > 0. By F i we denote the open arc, i.e., the image

of I = (-1,1). Let AI, i = 1,...,M be the vertices of 0 and

F = A1A1 +1 , i.e., the edge F is linking the vertices A. and

A i+1 . For simplicity we will also write A, = A M+ 1  An example

of the domain Q under consideration is given in Figure 2.1.

WM-i WM A3

AM-,I AM

w 2
rM 0

Ca r A2

A,

Figure 2.1. The scheme of the domain.

By oi i 1,...,M we denote the internal angles of 9 at A.

We shall assume that 0 < w s 2w. We will also consider the case

when two edges coincide. Then we understand them in a "two sided"

sense. If all edges are straight lines then we will call the

4



domain 0 a straight p91yon. Otherwise we will speak about a

curvilinear polygon. If 0 < w . < 2r, i = 1,...,M, we will speak1

about a Lipschitzian domain. Let us assume that r = ()

where r (0 ) = U F i r (1 )  =r _F(O, r(1 ) = U rF, where Q is
ieQ iE Q' 

U

some subset of the set (1,2,...,M) = 4 and Q' = 4-Q.

We have assumed for simplicity that Q is a simply connected

domain. The results we are presenting here are also valid when 0

is n-connected, bounded domain and its boundary is composed by

n-curves.

Denote I = {xI-1 < x < 1), we also will write I = (x,X 2 I

-1 < x < 1, x 2 =0) 2 when no misunderstanding could occur.

By L2 (0), L (0), L2 (I), L (I) the usual spaces of p-

Integrable, 1 < p < a, functions on 0 or I are denoted. By

Hm(Q), Hm(I), m a 0 an integer we denote the usual Sobolev space

of functions with square integrable derivatives of order < m on

o (respectively I). The space Hm (0) is furnished with the

usual norm

11U12 D atu 2
,, uI = 1 ,~ u,

Hm (0a L2 (0)
05IaI~m

where a (a 1 ,a 2 ), al > 0 integer, I = 1,2, l = a 1+0 2 anduIDau= Uu - u

1 2 12

Further we let

lul = I1IDm U11L ( )eHmo 2 a2)

IDmul2= IDa u l2

5



0As usual we shall write H (Q) = L2 (Q),

H (Q) = (u H (Q)Iu = 0 on r O)

0k

In the analogous way we define Hm(I) with Dku = u(k) dku

By rj(x) = dist(x,Aj) = Ix-A 1, x E Q, A we shall

denote the Euclidean distance between the point x and the vertex

Aj, rl(x) = Ix+1, r 2 (x) =Ix- 1, x E I. Let / = ( ..... M res-

pectively /3 = (3082)) be an M-tuple of real numbers 0 < qi <

1. i = 1,...,M. We will write a. < 3 < a2  (respectively 3 < 3)

if a1 < /3 < a 2  (respectively 83 < 8i)' i = 1,...,M. For any

k integer we shall write +k = (81+k,...,/3 M+k) and

M .i +k
13+k (x) = I I(x) I' , X E 0

and

2 /3.+k ~I
3+k = l nri(x)I x E I

By Ci(O), CJ(Q), C'(I), C(I), j -> 0 integer we will denote the

set of all functions with continuous J-derivatives on Q, Q, I,

Ifurnished with the usual norm IeI *H. )et

C() C MI

H (0), m it t > 0 integers be the completion of the set of all

infinitely differentiable functions under the norm

k=m

1jull 2 = lU1 2 Hii: ll.3+ic2 for 1, Ai
H ,e(Q) H L2 (0) for , .6

k=t

k=m
Hmu O(m, = !14 +k DOu I.L 2

.(3 jaI=k
k=O

6
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If m = t = 0 we shall write H0  L0 (). Analogously as

before we define

u 2 aOu 1 2Ctt11,1 = I+131 I!HL2(Q).
H0' (0) 2a--

In the similar way Hm MeI) is defined

k=m
1l 2  = lU!l 2  + _Dul! 2  for e 1

H .m,.(i H - + L2 (I)0B HI (I) k=

k=m
2 2II IDa

Ue,O( H 3+k L I)HB (1) 2,
k=O

e1
Further we Introduce the space Z e t 2 integer which will

play an important role in this paper:

ek' (

3 (0) = (ulu E H (0), any k > t, l1 '+k ID!ul(:0 ... 2 (O

k-,Cd (k-e)!, lal = k, C > 0, d -i 1

independent of k).

If we wish to underline the dependence on d we will write

t
IsR d (0). Analogously for t 2! 0 integer

Sk, e (k)
Sa(I) = (ulu - H/ (I), any k e e, 11 u L2 (I)

Cd -(k-e), C > 0, d > 1 independent of k).

Further for J = 1,2,

1(0) = {u H lSl~u IxCdkk l(+ ix)I

0 Hu0' (O)IID ulix) !5C ~+k+i3-J+1()I

In! = k = J-l,j,....,C > 0, d 1> independent

of k),

7~ ~ *4~~4 44 % ~~w %. V.VVVV w' 4 \.V~ '.



S (I) = {u E HJDJ(1)IIu(k)I < Ck+1/(x)l-1dkk!/3 3 k+/3j+l/2Xi

k > j-1,...,C > 0, d - 1 independent of k).

Let r U r Then we define Hk (/2 ) (respectively
ir~pc,*

Hk-1/2'-1/2(7), k - e), k - t > 1 integers as follows: for any

o Hk-1/ 2 (y (respectively H (/2Del/2()) there exists f A

k tH (0), (respectively H (0)) such that f = p. We define3r
then

k_-1/2 ((respectively !!! k1/2,-1/2
H () H3 0-)

-
=inf llfll k (respectively ifl!Hk,(O

fY=1P H (Q) H' (C)

e-112

By Se1 (), t - 1, we will denote the set of the traces on

of functions from the space S .

Let ri be an edge of C, then by the assumption there

exists a one to one mapping m. of I onto F. which is analy-1 1

tic. If F0  is a straight line then we shall assume that m. is

the linear mapping. Let u be defined on r i , U(x) = u(mi(x))

be defined on I. Then we define

Hm (r) = (uU E: H m(I))

lull -HUH'm(F1 ) Hm (I)

In the same way we define the spaces Hm r)(r / P(r /3 F(r.
Let us remark that, as we defined it, 1" I! depends on the

H ri

mapping mi, i.e., it depends on the parameterization of the arc

r . Nevertheless the space H FIe.) does not as well as (T (F

(see Lemma 4.6) but !B (P ) could be dependent on mi. Let us

8



state now some lemmas which will be used later.

Lemma 2.1. We have

g2 ,2 0O .13 (0) C ()

f"3

with the continuous injection.

See Lemma 7 of (3].

Lemma 2.2. Let u E H2 2 (Q). Then
f3

(i)

(2.1) ,ID Ulf _ II 2 C; U '
/31 L (0) H2,2(0

2 H3

(ii) Let u(A.) = 0, i = 1,...,M. Then

(2.2) !Iu4F _2 11L2(0 )  < CluI 2,2(
2 HQ - 22

See Lemma 8 of [2].

Lemma 2.3. t 2(0) C T2(0) and T2 S2 (0), 0 < 3+c < 1, > >

0 arbitrary.

See Theorem 2.2 and 2.3 of (6].

Lemma 2.4. Let u E $/(Q), j > 0, then u is analytic on 0 -

U A ' - 1M

Lemma 2.5. Let r # 1 and F(x), 0 < x < a is defined by

r x
F(x) = o(t)dt for r > 1

10

F(x) = Jf(t)dt for r < 1.

Then

9
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3. The model problem and its properties

Let 0 be the curvilinear or straight polygon and L be a

strongly elliptic operator

2 2

L(u) = - (ai,j (x)u x)x + Z:bi(x)ux + c(x)u

ij=1 i=1

where ai,j (x) = a ,.(x), bi(x), c(x) are analytic functions on

and for any ki,t2 E F and any x E 0 let

2

2I a 2+t2ai,j i j 1 #0(+ 2)

i,j=l

with p > 0.

Let B(u,v) be continuous bilinear form on H1(Q) H'(O)

2

B(u,v) = J0 L 2:a i,j ux .. + biux iv + cuvI dx.
oi, J=l i=1

We assume that

inf sup IB(uv)l -! p > 0!lut =1 Ilv!! =1

H (Q) H (Q)1 1 l~
uEH0 (0) vEH 0 )

1
and for any v E H0 (0), v . 0

sup IB(u,v)l > 0.
ilUlI H' (0) =1

1u1- HO (0) 1

Assume now that g[t] E %3/2-(r (le)) = 0,1, f 0 O(o) and con-

sider the boundary value problem

(3.1a) Lu = f on 0

11
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(3.1b) u = g[O] on r( 0 )

du _ [1]()
(3.1c) O n on r

c

where we denoted by n the conormal in the usual sense. The

solution of our problem is understood in the usual sense. Then we

have

Theorem 3.1. There exists unique solution H1 (0) of the

problem (3.1). See Lemma 3.1 of [4].

Let us mention some theorems addressing regularity of the

solution u0 .

Theorem 3.2. There exists 0 s Ri < 1, i = 1,...,M depending in

the problem (i.e., operator L, woi , etc.), such that if f

S 0(0)- g[ !83 / 2 -t(r()) C = 0,1, 3 < .3 < 1 then u0  E 2 23

Proof is given in [3].

Theorem 3.3. Let Q be a (curvilinear) polygon (instead of

straight polygon as in Theorem 3.2) and let then assumptions of

Theorem 3.2. hold. Then u0 E ().

Proof of the theorem is given in [6].

We have seen in [6], [13] (see also sections 5 and 6) that

when the solution u of the problem 3.1 belongs to the class
22 (Q) then the h-p version of the finite element method con-

verges exponentially.

Theorems 3.1 and 3.2 show that it is important to develop
312-k1

practical characterizations of spaces 8 (F), = 0,1, which

can be easily used in concrete cases to verify whether the input

data, i.e., g~f] belong to the desired space. We will elaborate

on it in the next section.

12



4. Traces and extensions of weighted Sobolev spaces. Characteri-

zation of the spaces t 3/2-e(r)
'3

In this section we will elaborate on the characterization of

the space S 3 = 0.1 which leads to an easy verification

in the concrete cases of applications.

Lemma 4.1. Let 3 = (/31,2 ) , 0 < 3 < 1/2 and g € H1 '' (I). Then

(i) g E CO (I) and .igilO < C!I1,
(I) !; H (I)

Ig(x)-g(1)l S C* 1 /2 1 (x)ilgil 1il
H M

where C is a constant independent of g(x) (but depends on ,).

Proof. Obviously

Ig(x)-g(t)l !5 1 ig'(,r dTr

t

(4.1) !S [9'g(T) 8(T)dT / (+3 (r))-2dr]

1/2/
!S ligh l,4 J(rll - r

H6 (I)[t

which shows that g is continuous on I Using the imbedding

theorem on (-1/2,1/2) = I' we have

(4.2) Ig(O)l s CIgitH 1 I CtIg!! 1 1
H (I H8 (I)

and we get immediately

-H0  M C H! ll
'g C (I) /3 (I

13



Further (4.1) immediately leads to (ii).IL

Lemma 4.2. Let /3 = 0(3 /), 1/2 < 83 < 1 and g H2 22() Then12 (I)

(i) g E CO (I) and iIgI C 0 M 5ClIgi H2 2,2I)
/3

(ii) Ig(x)-g(-1)I 5 C1 3/2-3(x)ig Hg 2,(I

/3
Ig(x)-g(1)I 15 C§ 3 /2 -8 (x gHH 2, M

/3
where C is a constant independent of g(x).

Proof. Using (4.1) we get

Ix

t

,2 2-/ /
9 [j r$2dT][J+ (T dT]

1- 1/2

:S II'g'24(~d 
/

1-,'L 2 (I) 13

and

+M

sC[Ig'(O) I + lig"483 L 2 (I)

C1 jH23 ,2 (I)*

In the last inequality we used Lemma 2.5 and the fact that 1/2 <

I3 < 1. The lemma now follows immediately.

Lemma 4.3. Let g Sd (I), 0 < 3 < 1. Then for k 11

14
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(k) -1 k
Ig ( lx) 5 C(+k-1/ 2 +3 (x)) (d1 ) k!

where r > 1 is independent of g,k,d, and C depends on ',

but is independent of g,k.

Proof. Let I' = (-1/2,1/2). Then for any k ? 1 we have

g H(k) 1  < C(-(1/2))-k-, k!d
k

H 1l( ') - 4

where 3 = max(3,.3 ). Hence by the imbedding theorem

Ig(k)(o)l s Cdkk!

~-1

where d 1 Yd, r >* (1/2) > 1. Further, for k ! 11x

Ig(k)(x)l s Ig(k)(o)l + I Jg(k+l) (t)dtl

0

glk)() + (k+l)( 2-2 1 2
- g ( O l + [ gM + k l( t ) d t ]

0 J

[1 

I- 1/2
x,+kt)dt

k
Cd 1k!if.+ -/ ( l

1 -

s C(dl)k!(+k_1 /2+,3 (x))-

Corollary 4.4. Let g E Z 1(I), 0 < !3 < 1. Then g ( (i,.

Corollary 4.5. Let g E t(1), 0 < , < 1. Then for k 2

(kc) -1 kIg(x)l C(+k_3 /2 +i(x)) d1 k!

and g E (!2(I.

15
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Lemma 4.6. Let = m(x) be a one to one map of I onto I,

m(x) be analytic on I and m'(x)I > 0, x E I. Assume that

g E G (I), J = 1,2, and define v(x) = g(m(x)). Then v V I(,

J = 1,2.

Proof. Because m(x) is analytic on I it can be extended into

the complex plane f on 16 = (z = x+iyl-1-6 < x < 1+6,17J < 8),

O >0, m(z) is a onetoone mapping of I onto I D I611 h' >

0 and Imi(z)I > a0 > 0, z 18. Let now j = 1 and x0  I

Then for k ? 1

(kc) -1 kIg k(x 0l H C(+ k-1/2+q (x 0) d 1k!

and the series

k=O

#(xo

isi abouey ovren(x0)x d a<1 Hneas9 g(k+1 (x )(z-x) k 1

-1 (x 0)
converges and Ig'(z)I s C38+ 1 /2(x0) for Iz-x0 1 a I  where

C is independent of x0. Hence g(z) is a holomorphic function

and v(z) - g(m(z)) is holomorphic, too. Using Cauchy theorem we

get immediately that for k 1

(k) k--
IV (x)I s Cd 2*+-1 2 +3~ (x)k!.

Obviously v(x) H1' (I). In quite a similar way we prove the
'3

statement for j = 2.

16
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Remark 4.1. Lemma 4.6 shows that the space M!(I) is invariant

with respect to an analytic mapping. Using the formula of the

n t derivative of a composite function (see formula 0.430 of

[15]) we can also show that tJ(I) is invariant space with
.13

respect to an analytic mapping m(x) as in Lemma 4.6.

Let r be an analytic arc. Then we could define the spaces

M Jl) and ! (r) with respect to the length instead as we did in

section 2 using a specific mapping. These two definitions are

then equivalent by lemma 4.6. and Remark 4.1.

Lemma 4.7. Let M(x), x - 2 M(x) = (M1 (x), M2 (x)) is a one to

one mapping of 0 onto 0 and IJ-I <- on 0, where J is

the Jacobian of the mapping. Assume that M(x) can be analyti-

cally extended on Q, = (x 02 Idist(x,Q) - 5) so that it is one

to one mapping of 0 onto Q D . Let u E ff(Q), j 1,2,

v(M(x)) = u(x). Then v (0). The proof is quite analogous

as of the Lemma 4.6 only we have to apply the theory of two com-

plex variables.

Lemma 4.8. Let g q /3J(I), 0 < Ii < 1, j = 1,2. Then

g - (1), 0 < < 1 0

3

= '+ , r > 0 arbitrary.

Proof. Let us consider only the case j = 1. The case j = 2 is

analogous. Because for k 1 1

Ig (x)I - Cd k!(*k+ _ 1 2 (x))

(Ic) k -12

we get

17
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[p

1I

(k) 2-2

(g ) x)) k+3-1 (x)dx

2k 2 -_ Cd (k!)2f (x)dx
-1 B12,

2k 2
SC(c )d (k!)

We see that Lemma 2.3 has a completely analogous version for the

relation between 2 ,1(I) and T 2 M.

Theorem 4.1. Let u E Hk+2 2 (), k > 0 and r be a straight

line edge of 0 and u = gi" Then

(i) For 1/2 < if13,i1 < 1 and k >- 0

k+ 1

g E H- '(r 1) 8 i = (3il 312,3i

3 ij > 0, Ei j E (/3 t+J-1/2,1), j = 1,2

and

g 51 Cd ki U;H ' c)k+,1( Hk+2 ,2(Q)
!!i/ ,3

with C independent of k and d 1.

(ii) For 0 < qP+ < 1/2, k z 1

i + 1

g H H ' 2 (r ), ' i,j E: (3i+j- + 1/ 2 , ),j = 1,2

g 1 Cui 2,2
H (r H/3(

18 ~** ~* *~**~~**j . . pu .~ .



C cdk, ugi Hk+1,2( k) 2

22
the g,'3 

< 1 then 
'3g

(iii) If u ,(0) and 1/2 < .3i  3~ < ' t e

Proof. Without any loss of generality we can assume that r i = %

and 
'H

+Y

F = (x .x2 1xI  I 2 = 0), A1  j = 1,0) A 0 (1,0, +2<

O k u 
'Let k ->0 and Vk = k+7 Then for k -2 :

;3 
1

22

O x I  'I
- A (--,) Ak+32 L2 (0) 1

kk

+ k,(D

29 u
k k +2

(0) - L (0

1I

+ n LCa 2'2 we g k+for L2())

Ck2
+- k u,, k+ 2 'L

lvl2  'Cu 3
Using Lemma 2.2 we get for k I

IV 1 1 2 ( ) ,2H ~ H3,2)

Beas fLma2.1 u - CO(0) and hence vo0(A i )  0, i 1,2. _

Hence using Lemma 2.2 we get

19",



v CH u!
VH2 (1 H2 '2 ..

ard hence for all k > 0

2
(4.3) !krkII 2 C(k+l) 2 u!!.k+2,2

H (Q) H '(0)
/3

where C is independent of k. Therefore by the imbedding theorem

vk E CO(j), k ? 1.

Let us show now that vk(Ai) = 0, i = 1,2, k 1 1. Assume on the

2 0
contrary that vk(A 1 ) > 0. Then because vk  C (Q) we have

vk(x) > c > 0 for Ix-A I < 6, 6 > 0.

Hence for k -2

2  ak u 2  2 2
-> (-- R dx IF v dx

Ik+8-2'K 2 -k
J 0  C1 x 1 10

where

=J(xi Ix-A I < 6

and we have the desired contradiction. For k = 1 we use Lemma

2.2 and get

r u22 2[ 42
O(D) > -8 dx > C _dx -_= .

0

If u S 0 (Q) then we get from (4.3) for k > 0

k
11Vk2 < cdk! .

H (O) 1

20
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We have g (k) (x) r k Then g (k) (x
ax 1

1
+ ,(X)V(X)I = ,(x )V(x where we wrote -1 (x and

k+3 k k++3 (X) akn1

Vk(Xl) instead of k+ 3 (x1 ,O) and Vk(XlO). Assume first that

k1 k+' k~Ltd = m it(. M
1'< 31,32 < . Let do j3in ... MdiSt (Aj,F 1 )) . Then we have

for X , 4(x1 ) +(x )doI and hence for j

J *2 - (j)(xI) 12 dx1

r 1- j1I
4 1

c 2 2 [iv t2 -2
j-l+( -1 3+j-1

-2 2 ]dx-2 2 [1 2-2+. Ij, V ]dx1 ) Cdo jj [Iv3_it - .
Ij+3 Vj1 3 3

2-2i+ IV I 2 2 - ]dx1 ).

Using Lemma 2.5 the fact that j = 1,...,k+l, vj 1 (Ai) = 0, 1 =

1,2 and that -/31 +1 > 1/2 we get for some d < 1

12 .I(J) () 2d~ Cd2 j v' 2-2b _1 Cd 1 Vj - _ dx1 ,Jr1 J-~j-1i 1

By (4.3) and the imbedding theorem we have for 1 < p < and

j =

V,< <-).; j Cj2 u j I2l
j-l"L p(I) 1 2(2) Hj

Hence for J = 1,...,k+l, because ' -R > -1/2 we get

21
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1 1

[ 2 g(j) 2 -2k 2 pd) 1/pv 2
1 I (x1)H dx !5Cd1  ( i V.-1,L I

-1 JI+31"- "3i-  3- L2q(I

-2k 2 -Cd 2k +2
1 j-11 H 2 (Q) 2 H k+ 2  (Q)

_3

Because by Lemma 2.1

C0 () H2 ,2

C H3

we get

:!g L 2 (r1) H u 2,2 .

13

Hence we have proven (i) and (iii) for 1/2 < , < 1 and

k a 0. Assume now that 0 < ,1113 2 < 1/2. We will proceed analo-

gously as before. For j -> 2 we have

[ 2 ig (j) (x ) 2dx 1
i j- 2+/3 (x1) dx
r 1 31

1
213j- j+22 2 2Cj 41J2 +3[IV ' 1 2 J,2 + 2 j n 2 dx 1

S Cd 2jI 2 ' 2dx_-1 -1+13 z- ( J -

when we once used Lemma 2.5 and the fact that -1+,?_;3 > -1/2.

Hence using (4.3) and realizing that -1+/3 1-313 > -1/2 we get analo-

gously as before for j = 2,....k+l

+ (2 Ig(J)(x H2 dx < 2k, 2Ig~~fldx <C 2 'u' k+2 2

-j-2+3 1 H2  ' (0)
1

Let us prove now that

22



g < C!u Hk+ 2 , 2  , k - 1.
(F. ) (Q)

13

We have v0 (AI) = v0 (A2 ) = 0 and hence

9' 2dx s Cd 0 ] [ f IV'( + IV0 1 l1- dx <d - It 2V1.2dx
3 -i 13

where we have once more used Lemma 2.5. Because 0 < } < 1/2 and

Vo0 Lp(i) C(P) v O  H2(Q) H2 ()
p

we proceed as before and (ii) and (iii) follow easily.

Remark 4.2. It was essential in the proof of Theorem 4.1 that

1" j E (3i+j-1-1/2,1) respectively, 3 ij E- (1i+j-1+ 1/2,1),

i.e., of the open interval. The proof does not hold for the

closed interval. It was assumed in Lemma 4.9 that the edge 0

of the domain was straight. Let us assume now that F. = m(I)

where m = (o,':) are analytic functions on I as given in

section 2. Then we have

Lemma 4.9. Let the edge F. of the domain be analytic. Then thea

part (iii) of Theorem 4.1 holds.

Proof. By Lemma 2.4, u -! 2(0) Let M( ) = ((!2),w( )) t

be the mapping of I onto F Then we define
1, .

M ( ,in) = ( - ,,!'( ), M (? ,?,) = ,w 1f +fl'(r ).
1 2

Then the mapping M( ,q) = (M1 ( ,rl),M 2( ,r)) is analytic on

I 6 : ( , [- - < r < 1+8 , 1771 < 8} > O, IJ < 0, 1J-l1 < o, on

I (where J is the Jacobian of the mapping) and maps I. onto

the (open) neighborhood S of F.. Denoting 0 = 0 S

23



T = M-(0 ), we see that v(x) = u(M (x)) is defined on T,
,2 B2

and v E, 2(T) by using Lemma 4.7. Hence v c b 2 (T), . > 0

arbitrary, by Lemma 2.3. Hence for 1/2 < 3ili3i+. < 1 we get by

(iii) of Theorem 4.1

g.(k) = v( ,O) E . (Ii), 3 i,j (3 i+j-i + e - I / 2 ' I / 2 ) '  j = 1,2.'3 i , 1,J

Because 6 > 0 arbitrary !3 (!3 -1/2,1/2). Analogously
i,j i+j-1 %

2for 0 < 3i#38 < 1/2, gi( t_ (1) , 3. (3. -1/2, .i)

1+1 3 ,J %+j- '•

Lemma 4.10. Let g1 Z Is(I), 0 < i3 < 1/2, 0 < .3 < 1,
1 3 1 *2

2
g 2 E Z2(I), 1/2 < 1 < 1, 0 < 32 < 1 Let S = (r,00 < e < 2n,2 ! 2

0 < r < 1) where (r,0) are polar coordinates with respect to

(-1,0) and f(r) = r. Define

U i(r,O) = gi(-l+r)

Vi(r,0) = 0[gi(-l+r)-gi(-1) ]

(by Lemma 3.1, 3.2, g1 
- CO(I), i = 1,2, and hence gi(-1) is

well defined). Then

2
U1 ,V1  * It(S), = 3i+1/2

2U2 2 E Is (S), 13 = 1i-1/2.

Proof. Assume first that 0 < '?1 < 1/2 and g1  %-(I). Set

3 = +1/2 and U 1 = g1 (-l+r). Then for k 2

ku -2+2 k-2 ? 2(7 )(r ) rdrde

S

24
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m. wI : ,u n ur M ~.'.- W3 i- W.I U UWt=y - V x, ti- =Wr s; *r U.,' a-. a,- u- pr a,, t- a,' an an a, r;: aJ 7 p., , V a, , .t , ; , , j ,r I

Cd 2k g (k) ~ 2Ik-l+/3 52(

2k 2S Cd 1k(k!)2

Hence by Theorem 1.1 of (4] we have for k > 2, jaI = k

ilID U1 /3+k2L 2(S) 2 cdk!.

Further

iU !!g(1).
H I - C(1)1 1/2 L2 (I)

1 , L2 (I) .

1 1 2

Hence U (S). Let now 1/2 < /3 < 1. Set q = - 1/2. As

before we have for k ? 2

U 2u 2  k-2+!2 drd Cd 2k 2

212and we get !;U < . Hence U. e 1 (S). Let us consider

now the function V1 (r,e). Then as before

f kv 1 2 k-2+13 2 2k 2 0
(-v-) (r ) rdrde ! Cd1 (k!)

S

Further, using Lemma 2.5 and k -- 2 we get

J 8 kv -2 k-2+ kg 2 -2 k-2+, 2

arkae r (r rdrde ark - ) r (r )rdrdOS rkl S ( r -

2k (k-1)- 112
<Cd 1k (g +(-1

k-2+ 3 L2 (I) P,

25



9'

U

, 2k (g(k-i) g (k-l) ))+ 2
1  1 k-2+3 1 L2 (I)

(g1 k-1))2,- :2

k-2+3 1 L2 (I)

Cd 2k(gk-l)(o))
2 + g (k) - 2(I)]

2k 2
Cd 3 (k!)

In the last inequality we used the fact that

Ig (k- 1) (O)l -s Cd k (k!)
44

kV IcLS

and realizing that - 0 for j 2 we have for k 2
ark-Jd.

DaV I I Cd-k!.

1 !3+k-2 L2 (S)

Further for 0 < 1 < 1/2 and I = (-1,0)

2 [ 1 1;2 2 + 2
1v 1  H

1  ) 1 1/2 " L (g (x)-g 1 (-1))+ 1/2  L2 (1

( 1 ) c i g 1 .1 2 , +
-C[ig I + '(g 1 (x)-g 1 (-1)) .

,3 L(I -1+,11 L 2( )

C[1191 ; 4, + :(gill;
C1 L I 1 1 'L 2(I) ]

-< CIlg 1I H 1g11I)

In the last inequality we have used once more lemma 2.5 and the

2 afact that 'q < 1/2. Quite analogously we prove that V2 (S).

26



I.

Lemma 4.11. Let g -- 11() , 0 < , < 1/ ,g -1) 0 . then for
,3,

1

0 < , < 1/2, v = g E 1 (I).
,3 3+yv

Proof. For k ? 1

1c

k 2-2,222

((iv ))d )dx
k-1 +8+J

k ]2
If k g(l) (4 _ (k-,f) 42 - dx ,

I' e ok- 1 +

!5 Cd2 k  (gl))21(k-t)!1 2 2 (k- 2dx) dx
t=0 -1

Cd2k[ J(g')) 2,2+-1

-21

+ (g) 4- (k!)2dx

-1 -U-1

k 1
c 2k[4= ( () 2 - ,+ - ( k ) )2d

1d (g) (kg)2dk- - -cd!) kx

t1 1

when we have used Lemma 2.5 in the above inequality. Further

f 2 2 2 .2
v dx= I g2 dx C!'g '1,
1 J-1 H^ (I)

I~13

by Lemma 4.1.

27
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Lemma 4.12. Let g 2 g(:1) = 0, 1/2 < ,1 < 1 0 < / < 1,2

-( ) g( 1 I# 1 0 < • 1 2

,3

v = g+ Then for li+j > 1, v E $1 (I) and for 3+/ < 1,
(I).

- 7 ,3 + ., - 1

v E I . 1)

Proof. (a) Assume first that 'q+f > 1. Then for k 2

J(v(k))242 dx
(v k+/3+-2

<Cd 2 k  (g (f')) 2(4(k-e) )2dx
-2 -(k-f)+k+3+t -2

2 l 2-22 2-2
+ (k!)1 g4. dx + ((k-4)!)1 g'. dx

-1 3-2 3-1

2k 1

Cd [(g4))4 ((k-eP)!dx
t =2 -1 3+E-2

+ (k!)2 g,2s- dx]

In the last inequality Lemma 2.5 has been used. Because by the

imbedding theorem Ig'(O)I C:g H2

'3

more rendering that 3?-1 > -1/2 we get

f 1 22 er 2 2 21 2
_'$ dxC g94dx + g'(0) I C-g' <I.I ' 222I
.-1 LJ 1  H2 (I)

/3

Hence

(v(k))2+ dx Cdk (k')

28
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Further as before

J V 24 2  dx Cr gC2 2  dx Cg' 2,2 < M.

13

1.Becuseg E CO0(I ), v F L 2 (I ) .

(b) Assume now that 3+,, < 1. Then for k >-2 we get

exactly as before that

(k))2- 2k )2

Sk+/- Cd (k!

Further

Jv2dx s c[J' 24 2  
1 dx + J g 242 dx

S1 dx +

Because -r+l > '3 by our assumption we see that

vI v 2dx !s Ciig!-2 2,2(I

-1

Using Lemma 4.2 we get also ,IY{L 2(1) 5-  C; g+ H ,2

[2 2

'33

Lemma 4.13. Let Q be a curvilinear polygon with the vertices

Au i - 1,...,M. Let u $ 2 and w be such that

IDawI !- C+!! lal!d

,V O V = 1 .. . ; M ) '  1 u 0 , /3 ; -.  > O , V i 1 0 .

Then v = wu E t2(0) where 3- = 3 i- i "

* 29



Proof. For k z 2, ll = k,
k 2

IDl I v1 2+2 dx < cd2k _ I k-(u1ID W1 + 2 dx

0 1 ~~a 1-2+7 k ,

k

s Cdk ((1+l))2 IDk-ul 42 - +dx
,=0 0

k

Cd 2k -" ((f,1)!)2( (k-1+t)!) 2  Cd2k-2 ((k-2)! 2
e=0

Further

J lDlvI2dx s C[J ,D1u 2 wI 2dx + IlulI2Dlwl2dx] <

0-
because by lemma 2.1 u E CO(0).

It is very easy to prove

0 1Lemma 4.14. Let g E $-(I), 0 < /3 < 1/2. Then v = g4 (I)
/3

and v(il) = 0. Let g '
S 1), 1/2 < 2 < 1 then V g+ 2

and v(±l) = 0.

Proof. The statement that v E- %.(I) can be directly verified.
13

By Lemma 4.1 v is continuous on I. If v(-1) s 0 then

2 2 - 2 2
v (x) > c > 0 for all Ix+11 < 6. Hence g = (v* )

0which would contradict with the assumption that g 0i),

0 < R < 1/2. The proof of the second part of the lemma is

analogous.

Lemma 4.15. Let u T.2(0), 0 < 13 < 1 and u = 0 at A. Then

u+ -1 1 (0). The proof follows easily using Lemma 2.2.

33
Theorem 4.2. Let 0 be a straight polygon with the edges I'

30
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i=1,...,M, and let g l(F 1 ) 0 < < 1/2,

2
i = 1,2 (respectively g - 2[ ) 1/2 < < 1, -1 2,

1(, =

i = 1,2) and g(Ai) = 0, i = 1,2. Then there is u such that

(i) u 2 (0), with 0 < ? < 1, j = 3,....M, arbitrary.

1 3 j
1i)ur g and ul !r 0 for j2..M

M 2
Proof. Let ,) = n !x-Ai12

, x Q. Denote g = g,'.. Then obvi-
i=3

1 182(rS lc noously g 1( 1 ) (respectively g 2(E)). Select now

0 < < 1/2 such that 0 < 4+1 1 < 1/2 (respectively
2 - i

0 < 1+?-1 < 1/2). Denote g = g n Ix-Ai = g+ where
i=1 -

= ( 01 ,2
0 ... ,O) By Lemma 4.1 and 4.2 g(A1 ) = 0, i = 1,2.

Using Lemma 4.11 (and 4.12) we see that g (I) (respec-
13 +,k

H1

Let U E H (0), AU = 0 and U = g on r and U = 0 on

r j, J = 2,...,M. Function U exists and is uniquely determined.

To see it let o(x), x F- r q c ri1), o(x) = 1 for x-A

r/2, i = 1,2 and O(x) = 0 for Ix-A I > t, i = 1,2 with ,

sufficiently small. We define

U = U +U
12

where AU =0, U E H1  1,2, Ui1r g(1-q'), U 2 1 1 =gihr = i 1 1 i=12 ~~

and Ui = 0 on rJ, J = 2,...,M. Because h, = g(1-() C (F

and hi(x) = 0 for Ix-All i ./2, U1  obviously exists.

By Lemma 4.10 there exists W H (0) such that W =h2

gc, and WI. = 0, j = 2,...,M. Hence U2  exists too. Function

31



U has the following properties:

(i) u= 0.

(ii) U 9, g Ir = 0, j =2, M

(iii) g is analytic on F (not on I'1).

(iv) in 0 = 0 - (xlIx-A I < 6), i = 1,2 with 6 suffi-

2ciently small there is W. such that W i  7 (0.

where ? = ,+v+1/2 (respectively = + +-1+1/2) and

W = g. (This follows from Lemma 4.10.)Wi I ,1,6

By the selection of j we have '3i > 1,/2, i = 1,2. Using

now the same arguments as in the proof of Theorem 2.1 in (4] we

conclude that U E- S2(0) where 3. = '3. + +/2 (respectively

+.y 'i+i-1/2), i = 1,2, and 1 > '3 > 1/2.

By Lemma 4.13 we see that u = +U 2 where 3~/3(0 .3

13 +1/2 (respectively 3.i = '3 -1/2), i = 1,2 and 0 < i. < 1

arbitrary for j = 3,...,M. In addition uIF = g and uli 0,
1

j =

2
Let us outline the main idea of the assertion that U J2(0).

Let S6 1  = (r,,(9 1 0 < ri < 6, 0 < ( i < r i ,Q where (ri, 0 
i )

are the polar coordinates with the origin in A1 . We select

F0 < 1 such that Si,2bi S 2  0 for i . Using

Theorems 5.7.1, 5.7.1' and 6.6.1 of [17] we conclude similarly,
M2

as in the proof of Theorem 2.1 of (4], that U , 2(0 - U S.
M ' i =1 1

due to the analyticity of g on r - U Si,, 4 Hence we have
i=1 i

2
to prove only that U 2 (S

Let
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0 6-  C ( F

q'0 (1) = 1 for 0 - r - 1/2

q0 (0) =0 for x 1

6 (r) = 2-- = (p(r).
1 i

Denote v = ,pU. Then v can be understood to be defined on the

infinite sector Q M= ((rii)JO < r. < 
O

, 0 < 0 < G, when

extended by zero outside of S. and we have v H I (QM).

1Remark 4.3. We have assumed that either g 13 s(rl), 0 < , < 1/2
'3

or g r i2 1 ) , 1/2 < '3 < 1. Obviously Theorem 4.2 is correct if

g 4 S1 r 1) only in the neighborhood of A 1 and g E !B2 () in
13 '3

the neighborhood of A2 . Theorem 4.1 leads easily to the next

theorem.

Theorem 4.3. Let Q be a straight polygon with the edges ri ,

11
i = 1.....M and let

g OE S (r 1  (3 = l'3i,13 i,2 0 i,1 3 i,2 < 1/2,

= i i+1 / 2' 1= +1/2/1~,1 1,2 i,2

or

2g 8 -2 (r ) f3 p (8 l 31, ), 1/2 < (3 1 , / , < 1

=' -1/2, .T =3 1 Q (1,...M).

il- i,1 ,1,1/ ,
tI

3/2
Let further g be continuous on t = U F.. Then g 3

IeQ ;3
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where 'i = max(3- 2 .3 8i,1 for A (if i-i v Q or i q Q,- , 1 (i i -i r i ,

then we define i-,= 0 respectively 3 = 0) and 0 < '3 < 1
i-1 ,2 ill 2

arbitrary for A. e r.
1

Proof. Because g is continuous on t we can construct a poly-

nomial P on Q such that g-P = 0 at A. Then we can apply

Theorem 4.2.

Remark 4.4. It is obvious how the theorem may be modified when g

EI (F) respectively g EB 2 (F.) in the neighborhood of A.
./3 1 '3 a

only. See also Remark 4.3.

Remark 4.5. Theorem 4.1 and Theorem 4.3 are complementary, which

is analogous to the theorems of trace and extension in usual

Sobolev spaces on smooth domain, namely, if g E (F) , 0
1'3.

23 i < 1/2 (respec.tively g E A (I, 1/2 < < 1) j = 1,2,
3 ij

2
then we have an extension by function G E 5 (0), ' = i +1/2,

13 += 3 1,2+1/2 (respectively 13 = '3 1/2, = 3 2-1/2),2 i,1 'i+1 i,2
and if G 8 (Q) then G = g 1 (F), '3 = 3-1/2 'iG 53Q ~ "3+ a i,1 i i,2

= '1-1/2 for 1/2 < 813 i  < 1 (respectively g 52 (Fi),Vi'+ 1 a t

t, -- t3 +1/2, 3 'i,2 = i+1+1/2 for 0 < /3i 3 i+1 < 1/2), e > 0

arbitrary.

Theorem 4.4. Let 0 be a straight polygon with the edges F.,

0I = 1,...,M, and let g E .(F ), 0 < '3i < 1/2, i 1,2, =1 1

3+1/2, i = 1,2 (respectively g E r1(F ), 1/2 < 13 < I, '3i
131

1- 1/2, i = 1,2). Then there is u such that

(i) u E 'S/ (0) with 0 < '3 < 1, j = 3_ ..,M arbitrary.
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)I =g and u "1 ~ I 1 , M

2p

Proof. By Lemma 4.14, g = g1 I(F1 ) respectively -() and
/3 /3

2

g(A1 ) = 0, i = 2,3, and hence by Theorem 4.2 there is v E 1B2(Q)

such that v =g on F and v = 0 on F, j = 2,...,M. By
-1

Lemma 4.15 the function v+1 has the desired properties.

Theorem 4.4 leads immediately to

Theorem 4.5. Let Q be a straight polygon with the edges F.,i

i = 1,...,M and let

g O (F1 ), 3. = (/i /3 ), 0 < '3 ,3 , < 1/2,/31 1 ,2 1,1 1,2
1

3 = /3 +1/2, /3 ' +1/2il1 ill i.2 i,2' 2

or

g OE r ( ) , 3 i =  0 , 8 )3,2 1 / 2 < 3 i l ,3 , < 1 ,1 , 1,21,1 <,2

i

3 , = (3i,l-1/2, 3 i,2 = 13i ,2 - 1/2. i ( - {1, M}.

Let r = U F Then g E 81 /2 (,) where = max(,3 2 )
ieQ 1. 

-

A EX (if i-1 Q or i Q when we define /3i-,2 0

respectively 0 =) and 0 < 3i < 1 arbitrary for Ai F

Remark 4.6. It is obvious how Theorem 4.4 has to be modified when

g 4 ) respectively g E 2( ) in the neighborh-od of A.

only. See Remark 4.3.

Theorems 4.3 and 4.5 give the characterization of the bound-

ary conditions which guarantees that the solution of an elliptic

partial differential equation of second order with analytic coef-
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ficients on a domain Q with piecewise analytic boundary belong
2 2

to ' (Q) or (2(Q) (see Theorems 3.2 and 3.3).

In the concrete cases these conditions are usually very easy

to check. Let us state a useful lemma which characterizes the

1 2space V(I) (respectively 52(I)).
/3 .13

Lemma 4.16. Let

Q = {z = x+iylx E I, lyl S- a (x), o > 0)
a

and G(z) be holomorphic function on Q such that for '> -

0

1 ' 2 )

IG(z)I s C+V(Re z).

Let g(x) = Re G(z)Ii or Im G(z)Ii. Then for v. > -1/2+(j-1),

13 i++V i  > 1/2+(J-1), 0 < ,3i < 1, i = 1,2, j = 0,1,2
Ix

g (X) M.

Proof. By Cauchy formula we have for k > 0

(k) - -k -k
Ig (X) I 1

- C+ (x)(I(x) k! -

Hence

1 1

S Ig(k)(x) 2 dx < (CkO-k)[ 42 dx (C d k!)2
-1 k-l+13 - +,3-i

provided that a- + q3 > 1/2. Further for k = 0

Ig(x)l ' C+V(x)

0and hence for i > -1/2, g :- H (I). The lemma is proven for

j= 1. The proof of the case j = 0 is analogous. Let us con-
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sider now the case j = 2. We see that for r. + , . > 3/2 and1 1

k 2

1 1

[ 2 Ig(k) 2 a-k)2[ 2 k 2.2 . g()(x),2dx s (Ck! -)2k k2 + dx s (C1dk!)
-1 k-2+,3 - -k+k-2+3

Further if Pi > 1/2 then also g E H (I).

Instead of IG(z) ! C1 (Re z) we can assume that

IG(z) - P(z) I C V (Re z) where P(z) is a polynomial.

Lemma 4.16 is very useful in practice. For example if g

is analytic on r then g(x) can be extended into some neigh-
iI

borhood of r. and therefore g E 8(I). Lemma 4.16 characteri-

zes very well the structure of the spaces 1 1I) (respectively

3'S2

Lemma 4.17. Let g e 1B(I), 0 < '3. < 1/2. Then there exists o, >

0 such that g can be analytically extended onto Q and

IG(z) - g(- 1 )(l
- x) - -2 g 2 1/2-3

(g E C (I) by Lemma 3.1).

1Proof. Since g E !l(I) we have by Lemma 4.3 for k 1

,(k)() r [2 1 -

Ig () 5 C f /2 (x) dkk!.

Hence the series

= g(k+l) k I
g'(x) -(x0 )(x-X 0) , x0 -I

k=0
4(xo) 1

is absolutely convergent for Ix-x 0 1 d 1 and hence also
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G'(z) = g(k l)(Xo (Z-xo ) k!

k=O

4(x 0 ) 1 -1converges for Iz-x 0< d 2 and IG'(z) I -E C+ (x0 ), x0 =
i3+1/2

Re(z), tnd C is independent of x0, which yields the lemma.

So far we have assumed that Q is a straight polygon. We

did not exclude the case that the internal angle is 2r, i.e., we

did not exclude the slip domain. Let us now consider the curvi-

linear polygon and assume that it is a Lipschitzian domain, let

us prove first

Lemma 4.18. Let Q = (xx 2!-i < x1 < 1, 0 < x2 < h(X1), h(x I ) >

o(x 1 +1), h(-l) = 0, a. > 0). Assume that v(x 1 ,x2) is an analytic
2 2

function on S = (x 1 ,x2 Hx +1) + x2 < 4) such that

(i) l(xl,h(x1 )) = 0.

91P
(i ) (XlO) > a > 0, -1 !5x 1 .

Define

r1 = {Xl,?X2-1 < x < 1, x =0)
21 2

r 2 = (x1 ,x 2 1-1 < x I < 1, x 2 = h(x 1 ))

and let T = 0 n S 1 where S= (r,eIO < 0 < 2n, 0 < r < 1)

where (r,O) are polar coordinates with respect to (-1,0) and

T = SI-T. Let gl !8- (r), 0 < /3i < 1/2, 8 1 = /32 (respectively

2
92 =8 1. ), 1/2 3. < 1, 8, = 2 ) , gi(-i)= 0, i = 1,2 and13 2 1 i2'g(1

S= r.

Then there exists
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V (T), V (T ), 3 = 3+1/2

2* 2 * -(respectively V2 5 (T), V2 i-- (T), 3= '3-1/2)
'3 /3

such that V gi and Vi gi on r 1 T and Vi,V. = 0 on

r 2 nT.

Proof. Let V(rn) =(rO)-. Then F(r,0) = q(x is analytic
r

1-

on r and p(x I ) > a > 0, hence q-(x 1 ) is analytic on F

too. In addition p = 0on r2' Further IDap(x 1 ,x2)H

Clal !f-10Idlal by Cauchy theorem of the theory of two complex

variables. Define g= g1  (x ) Then 1lE 7 ( 1 )1 and by

Lemma 4.11 there exists U 1 on S 1 such that U 1 6E 1i (S 1 ), =1 1 1

.6+1/2 and UI -- g1 " Define now V1 = U1q'p. Using Lemma 4.13

we conclude that V 2 (T) (respectively $2(T ))V =1 11F 1 g1

and V I = 0. The proof that V has desired properties is
l'r 222

quite analogous.

Lemma 4.19. Let Q = (xlx 2-i < x1 < 1, h (X1) < x 2 < h2(x1),

hI(x 1 ) < -O(X 1 +1), h 2 (x 1 ) > O(X 1 +l), n > 0, hi(-1) = 0, h i(x

analytic functions on I, i = 1,2) and

FI  = XlX2 -1 < x1 < 1, x 2  = h (X 1))

0 = S- , S5 = (r,eiO < e 5 2w, 0 < r < n/, T/ > 0),

77 '77'
i$ Q) S 7-o r

where (r,P) are polar coordinates with the origin at (-1,0).

1 2Let g1  B (F ) 0 < ,3 < 1/2 (respectively g2  t - I( )
339
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1/2 < qi < 1), 3 1 = $2' gi(-l) = 0 and let I = r. Then there

exists n > 0 and V 1 E 13 j (Q E 2 W = . +/2+, r > 0

2 2 ~,~~ 2arbitrary (respectively V2  = t(0 R V2 (E S ) =-1/2+ )

such that Vi lr g and ViIr 7 =0

Proof. Because h (x1 ) is analytic on I it can be analytically

extended onto I. = {--6 < x1 < 1+6). Then the mapping M

(Xl'x 2 )--4 (y 1 Y2 )' y1 = X1 1 Y2 = x2 -h1 (xl) is analytic on Q

7 = 6/2 and M(Q ) = " For 71 sufficiently small we have HO

S S 7  r 2 where r1 = (Y1IY 2 1-1 < yI < -1+7, y 2 = 0),
1

r2 =YI'Y2*-1 < Yy < -i+7i' Y2 = h2 (y1 ) = h2 (y1 )-h1 (y1 ) and

h2 (yI) > 1 (Y1 +1). In addition it is easy to see that IJIIJ-1

< p < a where J is the Jacobian of the mapping M. Because

h2 (y1) is analytic on -1 s yl s -1+0i we define V(y1 ,y2 ) =

-Y + h2 (yl) and ip(yl,Y 2 ) has the properties in Lemma 4.18.

1 2Using now Corollary 4.4, 4.5, gl (rF1 ), g2 - (2(F ) and hence

• -1
using Lemma 4.6, gl(M- (y)) 2 y E I(r*)' g (M (y))j y01 2 1 2Y2=O0

T r1 ). Using Lemma 4.8 and Lemma 4.18 there are functions V1

and V1  (respectively V2 and V2) on 0 7 2 (respectively

2Q o S2), which belongs to 9 2+  (Q  S2) (respectively
?7 '72 3+,,/2 17 '72

S2+ (?)* n S )). Using now Lemmas 4.7, 2.3, our lemma follows.:

The lemma leads to the following.

Theorem 4.6. Theorems 4.3 and 4.5 hold also for Lipschitzian cur-

vilinear polygon when q 1 are replaced by 0+r, e > 0 arbitrary.

Proof. Because the edges are analytic curves and g are analytic
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on r0  (but not on FO) we show similarly (as in the proof of

Theorem 4.1) that the solution u of the Laplace equation belongs

to ! 2 (0). This can be done identically as in the proofs of

Theorems 3.3 and 3.4 of (6], showing that u () .

Remark 4.7. Comparing the respective theorems for straight and

curvilinear polygons we see that in the latter case we are losing

slight in the regularity. It is not known whether this loss can

be removed.
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5. The finite element method

Let us consider the finite element method for solving the

model problem (3.1). We will assume that Q is a curvilinear

polygon and for simplicity of the exposition we shall assume that

the vertex A is located in the origin and the singularity occurs

only in the neighborhood of A1 . In this case we can assume that

4=r.

Let us first describe the meshes which we will consider. Let

= ( j = 1,...,n+l, i = 1,....I(j)} be the partition of Q

satisfying the following conditions (see Figure 5.1 where indices

i,j of Q i,J are given):

(1) 0i,j are open quadrilaterals or triangles (curvilinear

quadrilaterals or triangles), the intersection of any two Q.

is a common vertex or the entire side or is empty (the mesh shown

in Figure 5.1 is a geometric mesh with respect to the vertex A1

(see (iv)). If the singularity would occur also in other vertices

then similar refinement would be in the neighborhood of Aj, j >

1).

(ii) Let hi,j be the diameter of 0i,j and hi,j the

diameter of the largest circle inscribed in 0 i,j We shall

assume that there is a constant X independent of n such that

(5.1) hi,j /hi,j ! 1.

(iii) Let M = (Mi, j , 1 S i < I(j), i 5 j n+1) in which

M i is one to one mapping of the standard (master) square S =

[ (1,][-1,1] respectively standard triangle T = {(.,7! 0

1-p, -1 ~~~1 1) onto 0 i j  If T is a triangle then we will

assume that M can be extended into standard square S (T is

42
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3.4 2.4

1.4

~5.3

3.2

Figure 5.1. Scheme of the mesh.

half of S) suc. that Mi,j(S) = Gi, j c Q and M i, j  still sat-

isfies on Gi, j all conditions which will be later imposed on

M i,j . Let P ,j and i,J, denote the vertices and sides of
Q I ' henM-i,j(,e ,)an

;then Mij(Pi) and M_ j(.iy ,) are vertices and

sides of S, 1 < t < 4 (respectively vertices and sides of T

with 1 s t s 3). Moreover if M ,j and Mm,k  map (closed)

standard square S onto element Q and 0 mk wth the common

side 0 = P 1P then for any P . , dist(M-1(P),M- l ( P  =

dist(M lk(P) (P 1,2.
m,k i,j

Let Mi,j(S) M,k (T) = r = P1 ,P2 be a common side of the
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of the same length we make some assumptions as before. If ? is

the image of the sides with different lengths, then we adjust the

assumption in the obvious way.

We will assume that the mapping Mi' j can be written in the

form

x = X (,

(5.2) ( ,7) ' S (or T)

y = Yij(t,

with X Y being smooth functions on S (respectively T)

and for which more assumptions will be made later. We shall assume

that for lal s 2
(5.3) IDaX 'J, DaY' I- C h

i i'j 0 i'j

and

(5.4) C1 ,j < ij - h 2j

where CO ,C1 1C 2 are constants independent of i,j and n and

J iJ is the Jacoblan of the mapping M i j.

The mesh Qn(0 < or < 1) is called geometrical mesh with the

ratio a < 1 with respect to the origin when in addition follow-

ing conditions are satisfied.

(iv) Let di, denote the distance between the origin and

quadrilateral 0 ,1 ; then we assume that

n4-2-J - n+1-J(5.5) ca S d < ca -  for 1 < j < n+1, 1 i I(j)

(5.6) d = 0 for 1 < i s I(1)I

(5.7) V d h h
1 i,j i,j 2 i,j

44
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( 5 .8 ) 3 h,n+ 1 J 4 n

where c,c,W i , i = 1......4 are positive constants independent of

ijn. If Q) is a trianiq then we assume that

(5.9) dist(G.i j,O) - C dist(Qi,j,O)

and if / is the common side of Q and Q j >' then

is the side of G. ; if * is the common side of . and

0 i,, then is the side of G. or G if is the

side of Qi,j and the part of (Q, then ; is the side of

Gij. In Figure 5.2 we show the association of Gi, j and ?

In our example R(1) = 5, R(2) = 12 as can be seen the numbering

is largely arbitrary. Q. are shadowed by full lines and G
i, j

by extended dashed lines. The indices i,j are indicated in

Figure 5.2.

Let us verify now our assumptions. The condition (5.9) is
obviously satisfied. Let = Q11,2 Q 4,1 Then 1 1 is the

side of G 1 1 0 0,) which is our condition.sie 11 I,2 11Ol,2 10,2

Let '2 = , i 0 2,1" Then t2 is neither side of G

nor G 2, and our assumption is not satisfied. In this case we

have to define G 2,1= 021 2,1 4,2~

In application we can always assume that a proper association

between Qij and Gi' j always exists. Nevertheless we remark

that our assumptions mentioned above could be difficult to precise-

ly verify, especially that Mi' j  is one to one mapping. Never-

theless this is common in the finite element practice.
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83.2

Figue 52. Te shemeof he msh, O~ nd5.

4.2

-10 .2 -j 9 .
.2

So far we have assumed that the geometric mesh was refinedI

only in the neighborhood of one vertex (singular point). Analo-

gously we define the geometric mesh in the neighborhood of every

or some vertices. Instead of the formal definition we show in

Figure 5.4 a geometric mesh for the domain Q shown in Figure 5.3.

The vertices in which neighborhood the mesh should be refined are
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numbered.

-' Figure 5.3. The domain 0.

Figure 5.4. Geometric mesh on the domain 0shown in Figure 5.3.
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Let now P = (Pi, 1 , i ' R(j), 1 -j - n+1) and Q =

(q i,j' 1 <- i < R(j), 1 ' j - n+1) be the degree vectors with

integers pi ,q, 0. We define the subspace S P'Q(Q n) =

,PIP(x1,x2  = i,j (x,X2)) for (x 1 lx 2 ) - Q + i,j '

E S (respectively ,n E T) is a polynomial of degree - pi,j

in ? and of degree s- - in R, (respectively of total

degree max(pi,j,qi,j)}. Further we denote SP'Q'1(Qn) = sP'(Qn)

H 1 (Q) (usually but not always pi,j = q i,j)'

nLet us impose now additional assumptions on Q . First let

us assume that , Q are quadrilaterals. In this case let

n
i,j,e' 1 5 < 4 be the side of the quadrilateral Qi 0 3"

Then we assume

(5.9a) xl , = 'h' -1 - < 1, = 1,3
y h i , j l'i ,j , (

/

x hi 11101 j,f (7)

(5.9b) i , h -1 S 77 1 1, f = 2,4

and that for some constants C ? 1, L 1 1, which are independent

of i,Jf we have

(5.10) (k) 1 (k) CL kk!, k = 1,2....

and that the mapping M i ,j which maps S onto Qi,j has the

form

48
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+~ (rP ' + q,( +r
i j2 2 i 3' 72

+q~ ((1-c7 2 h

}h.1

i, j 1 2 2 i, 2 2
i~, ~ ,(1- ) (1-17) _(1 r) (1- )

= yi (,) = (1-n)j2

+ ( 1+ + ) (1l+17)
i,j,2 (2 )  2 + i,j,3 )  2

(1-)h+ ij , 4 2 )hi j

-(1-f) (l-r7) _ _ +___)_( _- _

-i,j,1 2 2 i,j,2 2 2

- YIj,3  2 2 7i,j,4 2 2

where we denoted by (x i jy'i j, = Pi, the vertices of

(),j. The notation is depicted in Figure 5.5 a,b.

ij ,

PI, JA P4  X3 4

1i,,3 P1,],3

PII

Figure 5.5. The curvilinear quadrilateralQ

and the standard square S.
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In the case that 0. is a triangle the mapping is essentially

similar. We will define it only for the case when only one side

is curvilinear. Figure 5.6. shows the notation.

Pi,j,3 .P3i~
M-7,

P,,j,, /,,j
9fi,, PI1,5S 2 ,j ,

(. Pi2, .,22

Y+ 2l + Y2 P2 Y

2V

Figure 5.6. The curvilinear triangle 0s

and the standard triangle T.

x ( 7P- 2 x2 2 1- )

+ [ X2 "2-1 + -.- 3+ 2

(5.11) M.

y = ='[i-y 1 !...- y2  -7J l~ 7h

+ y1[.4~2]+ y 2 .--- + y 3

We see that we can extend Mijonto the standard square S.

Let us now describe the finite element method. It is a stan-

dard one.

(a) First given the nonhomogeneous Dirichiet (essential)i,

boundary condition g[O] on F ( 0 )  we project it into the space

on traces of the subspace sPQ'l(Qn ) = S. We denote this
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10] (0-projection by gs, i.e. we replace g on r by g.S,

(b) The finite element solution u s  sPQlI(Qn) is now
S (J

defined in the usual way such that

B(u-,v) = fvdx + g vdx
o r

1 S (0)
hold's for all v S SPQ ' (Q ) r Ho(Q) when us  g on F

and

2 ausuv 2 (u9 u

(5.12) B(us,V) = [ + b -v cuv dx.ij (3l x (9 i X
_~ J =

We are assuming that B(u,v) satisfies the usual inf sup (B-B)

condition (with the positive constant independent of SP' 'In)

1 1on Ho(0)-Ho(Q)

The projection g[O]---+g s  is possible to define in different

ways. See (10], [11]. We will use the projection analyzed in [9].

Let f = M i,j(r) c r where , = (-1 < ? < 1, 0 = ) and let

g(,) = g(M i,i(?)). Then g is defined on /. (Because we will

assume that g1  E !5 < 1/2, it is continuous.) We now

define

where q is a polynomial of degree p = p. . in , qp(-1) =

qp(1) 0 and gS~. g(t) for .=±1. Polynomial qp is nowp S, p

such that 1
p-iI

(5.13) q = b

k=1

where ek(?) are Legendre polynomials and bk are the coeffi-
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cients of the Legendre expansion of (g-a-b<)'. We mention that

the sum in (5.12) starts with k = 1 because

(g-a-bt)'dx = 0.
-1

Further we underline that for any g(') which is continuous we

define bk in (5.13) by the integration by parts.
Finally~~ ~~ wdeiegx)=S( - 1

Finally we define g(x) = (M i,j (x)). We have now the fol-

lowing.

Theorem 5.1. Let Q be a polygon or curved polygon. Assume that
2 g[0]

the solution u of problem 3.1 belongs to %(Q), g is con-

[0 0] 1tinuous on F and gi g /F i E ZV), 0 < 3 < 1/2 or 

! 2(r i )  , 1/2 < '3. < 1, i Q. Let S = sPIQ'1(Qn) and us  is

the finite element solution defined above. Let 0 < p < v <

and let pj pi,j = qi,j < tn, pi,j,qi,j 1. Then

(5.13) 
!u-uS 1 ( 1 )  Ce bN

where N = dim SP'Q1(Qn) and the constant C in (5.13) is inde-

pendent of N.

The proof will be given in the next section.

In Theorem 5.1 we assumed that the solution is in the space

T2(0). In section 4 we discussed the structure of the input data

in the boundary condition functions g i], i = 0,1. g i and f

guarantee that the solution of problem (3.1) belongs to the space

2

Remark 5.1. Assume that b = 0 and c > 0 in (5.12). If
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g[O] = 0 and sP2 Q2, -IP 1 Q' ,(Q) then

(5.14) B(UsI'USI) B(Us ,u )
S1 S1 S2' 2

where u SP i Qil(Qn) is the finite element solution. If

g[O] # 0 then (5.14) does not hold in general. If g = 0 and

f = 0 and g[O] belongs to the space of traces of S P 'jQ 'l(,n)
(T '

i 1,2, (i.e, g = ) then
S1 S2

(5.15) B(Us s ) -" B(U s I U s

1 1 2 2
If g[O] does not belong to the space of both Sp 'lQ ,l(Qn), i =

If

1,2, then (5.15) does not hold in general (although numerical

experience shows that in most cases (5.15) still holds).

I
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6. The rate of conver-jence

We will prove in this section the statement of Theorem 5.1.

Let us prove some auxiliary lemmas.

Lemma 6.1. Let g H k(I), k 1, g(-1) = g(1) =0 and let pI
2. Let

(6.1) g, (x) a a%(x)

where 4 ~(x), j= 0,1,.... is the Legendre polynomial. Let

p-i

(6.2) g' (x) a Za (x)
J=1

(6.3) 9(x) =jg',(x)dx.
p x-1

Then

(6.4) g (1l) __ _ _ __ _ _

and

(6.5 ~gm)~(m) 2 I 1 r(p-s+1), (s+1),2I
(65) li 9 HL I) C2(1-rn) r(p+s4.1,:g L (I)p 2 p2

p > s e 0, m = 0,1.

Proof. Because g' L L(I) expansion (6.2) exists and because

g(±1) =0, a0  0 and (6.4) holds. Further obviously
00

2 2

p'L g,-,j
pL2 1 2j+l*

We have

d () 1 r(j-s+1) P S'S(x), s
e.(x = 2 r +1) J j-s
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where P S(x) is a Jacobi polynomial with

0 for j # k
2 l s2 SSs k's 2,l

(-x P (x)P k (x)dx = s (s+j+l)

-1 ( 2s+2j+l )F (j+l )F (2s+j+l)

for j = k.

Hence we get

'g! (s+l) 2 ( a'g' S) (x):12(I)

j =s:g "I ajae (s)I

(1-x2)s [ a (x) dx

J=s

SOD

N a 12  2 (j+s)!
2j+1 (j-s)!

J=p

which yields

2 (p-s)! l 2 2 (j+s)!
p L2M (p-+s)! 2 a j 2j+l (j-s)!

J=p

< (p-s)' gS+12
(p+s)! L 2 (I)

and we get (6.5) for m = 1. Further we have

g-gp Z j~,,-j_)
J=p

which immediately leads to (6.5) with m = 0.

11
Lemma 6.2. Let g 1E Hi(1), 0 < '3 < 1/2 (respectively g

vs8

SH2  (1), 1/2 < 3 < 1) an gp be defined by (6.2). Then

;gp'!L2 (I) Cp!!gU 1,1
2 (Hil (I)
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p L2 (1) H cIgpgII 1  (I)

respectively

g Cpg"2. ...L2 ( ) c p ! 2 , 2 ( 1H,3' ( I)

g Cegp!! g!!
p L 2 (I) H 2,2()

1I

Proof. We have for 0 < '3 < 1/2 and g _ H , 1()

1

la. 2 +1 I g'(x)ep (x)dx)
-1

21/2

< 2j+1 11g!l I (x)) 21- (x)dx 1 2

2 H1,1 M1
C2j+1 jgj2 H1,1M

/3

because te (x) < 1. Let now g E 1/2 < /3 < 1. Then

also

a s 2J+1 1  g'(x),e (x)dx
-1

C2j + 1  , , < c2J+1)lg,,

- 2 2 ,2

Hence

p-1lg' I2  1ak 2 2 2 1
< g < Cp2 g 2

k=1 H3 ' (I)

(respectively (Cp2 'gi! 2 ), and2,2
H8 2 (I)

p

2 < C j 1 2 2 g! 2

= L 2L (2k+1)2(gpj-ga 3 'H2,2 (k=" 56
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Proof of Theorem 5.1. The basic idea of the proof is very similar

to the proof of Theorem 5.3 of [6). Hence we will outline only

the basic steps and underline the essential differences in detail.

For simplicity and without any loss of generality we shall assume

that there is a singularity in one vertex A1 only which is

placed in the origin; we did make the same assumption also in [6].

We shall first assume that the mesh consists only of the quad-

rilaterals and that p = qij = 1 1. The proof has few

steps similar to those in [6],[13].

Step 1. Denote Ui j( ,) = u(Mi (,f)). Then

(1) for j > 1, U 1 ~ is analytic on S.

(ii) for some constants d and c independent of ij, i =

1,...,R(j), j = 1,2,...,n+l, and Jal = k, k = 1,2,... we have

(6.6) ID'U i k k C 1-3(n-j+2)ij

The proof is given in Lemma 5.1 of [6].

Let 1, = . .. 4 be the sides of S. Assume that

lies on ? axis (i.e., = I) and v( ) is a polynomial of

degree p on r and vanishes at the end points of /i Then

there exists polynomial V(f,q) of degree p in and R such

that

(6.7a) V(, )I 1  v( ), V( 77) IV 0, e = 2,3,4

and

(6.7b) ILV11 1 I Clvi 2
H (S) H (G1 )

For proof see Lemma 5.2 of (6] or (13].
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Step 2. We construct polynomial i,j (? ,) of degree p. in

and 77 on S such that f = . at the vertices of S and

for m = 0,1,2, 1 s s p j

m2(p.-s.) i ii

(6.8a) lIDm(Ue j_ i !2 - .- J 2(S)
• HO(S) (pj+s.+2-2m)! i.iiHSj+ 3 (S)

and using (6.6)

C (pj-sj )! [dSj+3(s + 3 ) !]2 2(1-,) (n-j+2)

_(_p.+S.i+2-2m)!

(for the proof see Lemma 4.2 of [13]). Define ,.i .(x,y) =

(M- 1 (Xlx for j-2; then we have for 0 -5 m i1

Dm (01-rn m0
1- Dh1,J m D m ( U , _t )Ji,J HO (0. .) ( i,j H0 (S)

CI• .+ 2d +3( sj +3) !all-f3)(n+j+2)<-Ch,j (p+s +2-2m)71]

For j = 1 we use p = 1 and get

(6.9a) 1JU i ll-1i~ H I(S) - Ch i ll ," H 2 2 (0)

( 6 .9 b ) il i l - 4i l H) H  2 , 2 ( S -! C ! u II 2 , 2 Q

/3'

(6.9c) )u-, P h - 8 P UP H 2

1 il H2 , (0)

in (6.9b) we define H , (S) with the weight r with respect

to (-1,-1) and we assume that Mil ((-,1)) (0,1) = A

Step 3. The function o i,j are constructed separately on every

1-1

ij (hence the function t composed from tei, e ( H it rLetto -1-i ad w asue hatMi((1.)) (,1 5A8



wr' NJ 91' 91V VV~V V_ W_ V ff- NVW_ Uy U

us assume now that , = 0. R,- Then (0i.j-q)k, ) 0;
i,j ki,jk #'

nevertheless 'i' = 0 in the end points of . Let us assume first

that ? - e ? 2 and that , = M. .(I). Denote ,(') = ,;(Mi,j,;.

Then ip(,) is a polynomial of degree p = max(pj,p,) on I

vanishing at ±1. Using the imbedding theorem we get

ilj , ' Uk,,P- k, 2
SH ( max(,U -i jH 2 (S)IIIP!! I(I)J '~ H 2 (s )

and hence by (6.7) there is a polynomial V(Y,R) of degree p

such that Vij (t,) = v on I and

i jH I(S) H I(I)

We estimate then *i'! by (6.8) for m = 2. For j = = 1

function ip = 0 on . For j = 2 and t = 1 we proceed simi-

larly using (6.9b). In this way we construct correction function

V .(, ,) and Vij(x l 'x2 ) = V. ,(M (x,#x so that

.,3+V. . are continuous on every / ' F, =0.. Q i.e.,
ij ailj a'j k,t'= Pi +V. belong to

the composed function v such that vi, Vj 1 bj
i'j

H (0) and

R(1)
2 C hu! 2(1-)
H ( ) [ 2,2 (0) il

n+l R(1)
+ ( j s 2 ' (d Sj+3 (s + 3 )1! )2(,2 11 - 'M n + 2 - j ) '

Y.I (pj+sj-2) ( 5-
j=2 i=-

(0)
Step 4. We estimate now u-o at the boundary F Let / =

Q r .
(0 )  Assume first that j - 2. Then using (6.5) and the 0

i'j
(0]

assumption about g we can construct in the similar way as
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I

before the correction function Vi i  so that (affix the correc-

tion) g on F[O]-[ [ 0 ]  U Qi,j and (6.10) still holds.
j=1

If F = Q [01 then we use Lemma 6.2 and the assumption
1,1

that p s in and analogously as before we construct the correc-
" 1

tion function V. 1 so that function 1 ; H (0) is constructed

which has the following properties:

(i) % i H P Q' (Q ) .

(ii) =s on r (0 )

(iii)

1 1 2 C[n2a2(1 - 3)nH1 (0)

(6.11) n+1
) - (p-s)! sj+ 3  2 2 ( - )(n+2-j)

. (p +s -2)! (d (s+ 3 )I)

"j = 2 i

In (6.11) we have used the assumption about the mesh, namely that

R(j) < K independently of n.

Step 5. So far we have not chosen in (6.11) the values of s.

By the same procedure as in (6] we can select s. in dependenceJ

on p. so that

(6.12) u-P C 1 e
H1 (O1

and because N < K(vn) 2n < K1 n3 we get

1/3
- N

(6.13) 'U-, I C1e(0

Step 6. Let now u be the exact solution of problem (3.1) such

that g[O] is replaced by gs" Then Us = u-u satisfies
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Lus = ]
dUs [1]1

an g on F ( I )

Onon
C

us =gs- on r

As in Step 4 we construct function v - H (0) such that

V[0] (0)
v = gs- on F

and

iivi, C~iu-( [
H (0) HI(0)

Because we have assumed that the bilinear form associated to prob-

lem (3.1) satisfies the inf-sup (B-B) condition we get immedi-

ately

H (0) H (0)

Step 7. Finite element solution u5  can now be understood as the

finite element solution of the problem with exact solution

u= u + us" Now we have using (6.13) and (6.14)

1/3

SI Ce

and hence also

1/3
u, S 1 Ce

Therefore

IIU-U S!i Ce- N 1/3",'

which was to prove.
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So far we have assumed that the mesh consists only of the

quadrilaterals. If the mesh has also triangular elements we pro-

ceed very analogously.

In Step I we use the mapping Mi, j which is extended on S

and consider U. as the image of u on Gi~. it is easy to

show that the extension function V( , ) having the same proper-

ties as mentioned in (6.7) exists for T. See e.g. [6].

All other steps are now the same only rendering that the

"correction" fucntions now could be of degree 2p. because i.

is polynomial of degree 2p on the diagonal of S.
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7. Numer i ca 1 Examples

Let us consider the problem

(7.1) Au = 0 on Q

when Q is an L-shaped domain as shown in Figure 7.1 and the

Dirichlet conditions are prescribed on one part of aQ and the

Neumann conditions are the other part of i(i.

y
r3

r r2

r40 , x

r,

r5

IFI

Figure 7.1. The domain Q.

We will consider two problems with various combinations of the

Dirichlet and Neumann boundary conditions with the exact solution.

Case A:

1/3 1
(7.1) u =r sin -

3

Case B:

2/3 2(7.2) u =r cos Z 84

The sequence of meshes Qfl (, = 0.15) is characterized by the
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-
22
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~L

0.1 0.4

0.1

. q-0.5:4.0225

n=3

n f.

Figure 7.2. The meshes () n =1,2,3, (1 1.5
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11 1

obviously have t- and hence g1  P1 ( 6) with ,3 > Using

Theorem 4.3 we see that g R3 /2 (aQ) with 3 > and hence by
43 3

2 2 - >
Theorem 3.2 we have u E V,,(Q) with 13 > max(, and 2

for i = 2,....6, 7. depend on the problem. In our case it can

beshownthat -1 and 3. = 0, i = 2,...,5. Hence 1>
3 1

2 arbitrary and 0 < 3. < 1 arbitrary for i = 2,...,6. This of

course is obvious also from the fact that the solution is given by

1
(7.1). Analogously in the case B we have 1 > 13 > 3 and 0 <

, < I for 1 = 2- - 6.i

Denote E(u) = IB(u,u), EFE(n,p) = E(Us) where S being

characterized by the mesh 0n and degree p and

rau av au av
*B(u,v) = j T a- + j- -) dxdy.

Let e = u-us, Oell2 = E(e) and lie, = le!! ; be the error,

the error norm and the relative error norm, respectively.

We have in the case A: E(u) = 0.423569 and in the case B:

E(u) = 0.918113.

Figure 7.3a,b depict the relative error of the finite element

solution in 0 in the double logarithmic scale. We mention that

for n = I and p = I we have N = 0 because the finite element

solution is determined directly by its values at the boundary. We

see that in the case A the p-version does not practically converge

while in the case B it does. Nevertheless the h-p version

(n = p) converges in both cases as the theorems 5.1 predicts. We

also show in the figure the degree of the elements. Figure 7.4a,b
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Figure 7.3a. The relative error of the p and h-p version in

4eg Ie' fge N scale, Case A.
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Figure 7.3b. The relative error of the p and h-p version in

eg 11el EF g N scale, Case B.
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show the same results but in the scale f'gilez N1 / 3  We see

that the error of the h-p version is nearly linear in this scale

which shows that the error decreases exponentially as Q(e

The divergence of the p-version in the case A is related to

the way how g is replaced by g5  (see Lemma 6.2). We have shown

in [91 that the p-version converges with optima rate provided that

g r H (f). If g z HI () to get optimal rate of convergence we

have to replace g by gs in another way (so called H1/2 pro-

jection, see [10)). Then the convergence is also guaranteed.

Figure 7.5 compares the performance of the method with H1 /2 pro-

jection in the case A for n = 1. We show in Figure 7.5 the slope

of O(N -1 / 3) which is also the optimal rate. For the detailed

comparison of the performance of various projections, specifically

the HI and H1/2projection we refer to (7].

-,100
z 80 - 2 5 6

X----- 7 8--
- X ...... =--x.. = -

rZ 40-
z -

U.J >. -----H -PROJECTION 1/ 3
> 1/2
, : 20 ---- H PROJECTION

WUJ
II-- 10 100

-N-- -.-
NUMBER OF DEGREES OF FREEDOM

Figure 7.5. Relative error of the p-version for the H -projection

and H1 /2-projection, Case A.
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I I ' I -

10- + 0, 1) (1, 1) CASE B

u=r cos 2e/3
10 0

(2,2) 7:E - (I ,I (2,2)0-0
0 _
z N\
(- (3,3)J (n, p)

-
" X \ (3 ,-

uJ n: Meshz _

p:Degree of

- +, Polynomial

I \'

I -- - ( 4 ,4 ) -

-- i (6,6)-
LIl .. . ..z

_ ----NEUMANN B.C.

JuJ - DIRICHLET B.C.
Cr

0.011 I_ __II_
0 2 4 6 8 10

-N"3"- N 1/3

NUMBER OF DEGREES OF FREEDOM

Figure 7.6b. The relative error of the h-p version for various

boundary conditions, Case B.
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In Figures 7.6a,b we show the performance of the h-p

version (p = n) for various combinations of the Dirichlet and

Neumann conditions (using H -projection technique for Dirichlet

conditions). We see that there is no significant difference

between the performance of the h-p version for various combina-

tions of the boundary conditions. (We mention that in the case A

the Dirichlet condition on F 1 is homogeneous and so it does not

contribute to the error.) In contrast the p-version with the

H (F ) projection performs independently of the boundary condi-

tions only if g H(Fi while for the Dirichlet condition with

9 H (F i)' < 1 the performance deteriorates. This can be seen

by comparison of Figures 7.3a,b resp. 7.7a,b where the error is

given for the Dirichlet resp. Neumann boundary condition. We see

that in the case B the performance of the p-version (with HI

projection) for Dirichlet boundary conditions is the same as for

the Neumann condition while in the case A we see significant

differences.

If the Neumann condition or Neumann condition and homogeneous

Dirichlet conditions is prescribed, then the strain energy of the

finite element solution is increasing with p, i.e., EFE (n,pI

EFE(np 2 ) for p2  p p1. Because increasing n, the shape of

elements is changed, we do not have necessarily EFE(ni,p)

EFE(n2 ,p) for n > n although practically this usually occurs.

If the continuous Dirichlet condition is prescribed on the entire

boundary and g, are polynomials of degree p p0  then

EFE(np 2) E(n,p ) for p2  P1  PO i.e., the strain energy is

decreasing with p. If the Dirichlet condition is not a polynomial
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or on a part of aQ the nonhomogeneous Neumann condition is pre-

scribed while the Dirichiet condition is given on the other part,

the energy is not monotonic.
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Figure 7.8 shows the behavior of E for the case A, where
FE'

n 1,2 and p = 1.....,8 when the monotonicity occurs only in

the case d as expected. I

0.75

0.70 -_

0.65 a) ,a

0.60 -17 '/

>-0.55b)"

Lu 0 .5 0  
_- -. I.z n-I _ -n 2 .

Lu 0.45 C

0401711 1 - - _" -
0.35 EEX _ n: _ - d)

oo __ u__ _ r 1 3_sin 9/3 ,__
0.30 1f V
0.25

I 2 3 4 5 6 7 8 9 10
DEGREE p

Figure 7.8. The monotonicity of the energy of the finite

element solutions.

In the case when the approximation of the nonhomogeneous

Dirichlet boundary conditions do not contribute to the error we

have

77

,, e.' /..:..'.:,'','; ,. ,; ",' ..-- ", "- ". " ",-",,",,"..,- .- - "- ",,'. ",,', ". ", ".'. - " ". "." •"., , -.- -,".- .- ,-- •• . .- ,.,, .-. '-



e 2 = IE(uS) - E(u)1.

In the case when the Dirichlet conditions are prescribed on the

entire aO we have

e 21 = J(E(us) - E(u)) + RI

where the correction term T is due to the fact that the finite

element solution does not satisfy exactly the boundary condition

(i.e., gs og). Nevertheless T is usually negligible for p 2

and IE(uS) - E(u) /2 = e is very close to e E. The term
E

can be easily computed if the small solution is known. In fact

2 2 1e2 = ,UU = B U-u U)

= 2 B(usUs) + B(u,u) - 2B(uu S )J

= B(U -B(u'u) + B(uu-us)

- E(uS) - E(u) + k

where

= B(u,u-u s).

Because Au = 0 we have by integrating by parts

du (u-Us) ds

do

d u

and u-u S is known on OQ as well as -- n Table 7.lab shows

the correcticn term W for the mesh Q n n = 6 and the relative6'

value of T, e depending on p for the case A and B.
E
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Table 7.1a. The correction term 'R

CASE A

pk e 2 R/1I20

_ _ _ _ _ _E E

1 -1.237(-2) 5.626(-2) 21.99(0)

2 -1.755(-4) 4.945(-3) 3.55 (0)

3 -4.229(-6) 3.419(-3) 1.21(-1)

4 -1.203(-7) 6.091(-4) 1.97(-2)

5 1.053(-11) 5.027(-4) 2.09(-6)

6 3.927(-9) 4.701(-4) 8.35(-4)

7 4.064(-9) 4.535(-4) 8.96(-4)

8 4.059(-9) 4.433(-4) 9.18(-4)

Table 7.3b. The correction term T

CASE B

p ; 2 '1 1 l 2
_ _ _ _ _ _ _E E

1 -2.698(-2) 5.082(-2) 19.67(0)

2 -1.542(-4) 1.695(-3) 9.09 (0)

3 -2.614(-6) 1.801(-4) 1.44 (0)

4 -6.126(-8) 2.296(-5) 2.67(-1)

5 -1.629(-9) 3.336(-6) 5.04(-2)

6 -4.233(-11) 5.512(-7) 7.68(-3)

7 7.636(-12) 1.202(-7) 6.35(-3)

8 9.268(-12) 4.619(-8) 2.01(-3)

Let us mention that for higher p the correction is influ-

enced by round off errors.
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Science and Technology. It has the following goals:

o To conduct research in the mathematical theory and computational
implementation of numerical analysis and related topicq, with Pmphasis

on the numerical treatment of linear and nonlinear differential equa-

tions and problems in linear and nonlinear algebra.

o To help bridge gaps between computational directions in engineering,
physics, etc., and those in the mathematical community.

o To provide a limited consulting service in all areas of numerical

mathematics to the University as a whole, and also to government
agencies and industries in the State of Maryland and the Washington

Metropolitan area.

o To assist with the education of numerical analysts, especially at The
postdoctoral level, in conjunction with the Interdisciplinary Appl~ed
Mathematics Program and the programs of the Mathematics and Computer
Science Departments. This includes active collaboration with govern-

ment agencies such as the National Bureau of Standards.

o To be an international center of study and research for foreign

students in numerical mathematics who are supported by foreign govern-

ments or exchange agencies (Fulbright, etc.)

Further information may be obtained from Professor I. Babuska, Chairman,
Laboratory for Numerical Analysis, Institute for Physical Science and
Technology, University of Maryland, College Park, Maryland 20742.
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Mathematics Program and the programs of the Mathematics and Computer
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students in numerical mathematics who are supported by foreign govern-
ments or exchange agencies (Fulbright, etc.)
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Laboratory for Numerical Analysis, Institute for Physical Science and
Technology, University of Maryland, College Park, Maryland 20742.
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